Dwork conjecture
WebThe Weil conjectures are stated in a paper in 1949. He had earlier proved these conjectures for the case of curves (dv = 1) and Abelian varieties by extending earlier … Web开馆时间:周一至周日7:00-22:30 周五 7:00-12:00; 我的图书馆
Dwork conjecture
Did you know?
WebOct 22, 1987 · Volume 197, number 1,2 PHYSICS LETTERS B 22 October 1987 p-ADIC STRINGS, THE WEIL CONJECTURES AND ANOMALIES'' Bernard GROSSMAN Rockefeller University, New York, NY 10021, USA Received 22 May 1987 An analogy between the Veneziano amplitude and the p-adic interpolation of the beta-function is … WebLes conjectures de Weil ont largement influencé les géomètres algébristes depuis 1950 ; elles seront prouvées par Bernard Dwork, Alexandre Grothendieck (qui, pour s'y attaquer, mit sur pied un gigantesque programme visant à transférer les techniques de topologie algébrique en théorie des nombres), Michael Artin et enfin Pierre Deligne ...
WebJul 31, 2024 · The Bombieri–Dwork conjecture, also attributed to Yves André, which is given in more than one version, postulates a converse direction: solutions as G-functions, or p-curvature nilpotent mod p for almost all primes p, means an equation "arises from geometry". See also. Mirror symmetry conjecture; Mixed Hodge module; Meromorphic … WebDeligne's proof of the last of the Weil conjectures is well-known and just part of a huge body of work that has lead to prizes, medals etc (wink wink). The other conjectures were proved by Dwork and Grothendieck. According to Wikipedia, Deligne gave a second proof, and then mentions three more proofs. However, it is unclear from what I read as ...
WebSep 23, 2013 · Using Dwork's theory, we prove a broad generalisation of his famous p-adic formal congruences theorem. This enables us to prove certain p-adic congruences for … WebDwork's conjecture on unit root zeta functions By DAQING WAN* 1. Introduction In this article, we introduce a systematic new method to investigate the conjectural p-adic …
Webconjectures was outlined by Faltings [Fa], using a relative version of crystalline cohomology. However, fleshing out the outline seems to present a formidable technical …
WebDwork’s conjecture on unit root zeta functions By DaqingWan* 1. Introduction In this article, we introduce a systematic new method to investigate the conjectural p-adic meromorphic … simply right incsimply right inc utahWebThe subject languished until the recent work of Chiarellotto and Tsuzuki [CT06]; inspired by this, André [And07] proved a conjecture of Dwork [Dwo73b, Conjecture 2] analogizing the specialization ... ray\u0027s primary arithmeticWebDwork in 1960. All the conjectures except Weil's Riemann hypothesis follow in a 'formal' way from the existence of a suitable theory of homology groups so that the Lefschetz for mula can be applied. One such theory was Grothendieck's etale theory developed by him in collaboration .with MArtin and others. ray\\u0027s primary arithmeticWebtechniques) of the first one was also found by B. Dwork [Dw60]. The third conjecture was proved by P. Deligne about ten years later [De74]. We state these conjectures following Weil [We49] rather closely. We assume that Xis a projective scheme over Fq such that X×Spec(Fq) Spec(Fq) is irreducible and nonsingular. 1.3.1. Rationality. simplyright plus• Jean-Benoît Bost, Algebraic leaves of algebraic foliations over number fields, Publications Mathématiques de L'IHÉS, Volume 93, Number 1, September 2001 • Yves André, Sur la conjecture des p-courbures de Grothendieck–Katz et un problème de Dwork, in Geometric Aspects of Dwork Theory (2004), editors Alan Adolphson, Francesco Baldassarri, Pierre Berthelot, Nicholas Katz, François Loeser simply right premium diapers reviewWebMar 1, 2008 · Dwork’s conjecture on the logarithmic growth of solutions of p-adic differential equations - Volume 144 Issue 2 Skip to main content Accessibility help We use cookies to distinguish you from other users and to provide you with a … simplyright.teamehub.com